Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 206(3): e0036523, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38436566

RESUMO

Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen causing chronic infections that are associated with the sessile/biofilm mode of growth rather than the free-living/planktonic mode of growth. The transcriptional regulator FleQ contributes to both modes of growth by functioning both as an activator and repressor and inversely regulating flagella genes associated with the planktonic mode of growth and genes contributing to the biofilm mode of growth. Here, we review findings that enhance our understanding of the molecular mechanism by which FleQ enables the transition between the two modes of growth. We also explore recent advances in the mechanism of action of FleQ to both activate and repress gene expression from a single promoter. Emphasis will be on the role of sigma factors, cyclic di-GMP, and the transcriptional regulator AmrZ in inversely regulating flagella and biofilm-associated genes and converting FleQ from a repressor to an activator.


Assuntos
Pseudomonas aeruginosa , Transativadores , Transativadores/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , GMP Cíclico/metabolismo , Biofilmes
2.
mBio ; : e0257023, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014955

RESUMO

IMPORTANCE: Dispersion is an essential stage of the biofilm life cycle resulting in the release of bacteria from a biofilm into the surrounding environment. Dispersion contributes to bacterial survival by relieving overcrowding within a biofilm and allowing dissemination of cells into new habitats for colonization. Thus, dispersion can contribute to biofilm survival as well as disease progression and transmission. Cells dispersed from a biofilm rapidly lose their recalcitrant antimicrobial-tolerant biofilm phenotype and transition to a state that is susceptible to antibiotics. However, much of what is known about this biofilm developmental stage has been inferred from exogenously induced dispersion. Our findings provide the first evidence that native dispersion is coincident with reduced cyclic dimeric guanosine monophosphate levels, while also relying on at least some of the same factors that are central to the environmentally induced dispersion response, namely, BdlA, DipA, RbdA, and AmrZ. Additionally, we demonstrate for the first time that cis-DA signaling to induce dispersion is attributed to the two-component sensor/response regulator DspS, a homolog of the DSF sensor RpfC. Our findings also provide a path toward manipulating the native dispersion response as a novel and highly promising therapeutic intervention.

3.
J Bacteriol ; 205(10): e0016623, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37756166

RESUMO

The ninth American Society for Microbiology Conference on Biofilms was convened in-person on 13-17 November 2022 in Charlotte, NC. As the first of these conferences since prior to the start of the COVID-19 pandemic, the energy among the participants of the conference was clear, and the meeting was a tremendous success. The mixture of >330 oral and poster presentations resoundingly embodied the vitality of biofilm research across a wide range of topics and multiple scientific disciplines. Special activities, including a pre-conference symposium for early career researchers, further enhanced the attendee experience. As a general theme, the conference was deliberately structured to provide high levels of participation and engagement among early career scientists.


Assuntos
Pandemias , Sociedades Científicas , Humanos , Estados Unidos , Biofilmes
4.
Microsc Microanal ; 29(Supplement_1): 1, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613027
5.
J Bacteriol ; 205(6): e0000323, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37199658

RESUMO

The opportunistic human pathogen Pseudomonas aeruginosa causes chronic infections that involve multicellular aggregates called biofilms. Biofilm formation is modulated by the host environment and the presence of cues and/or signals, likely affecting the pool of the bacterial second messenger cyclic diguanylate monophosphate (c-di-GMP). The manganese ion Mn2+ is a divalent metal cation that is essential for pathogenic bacterial survival and replication during the infection in a host organism. In this study, we investigated how Mn2+ alters P. aeruginosa biofilm formation via the regulation of c-di-GMP levels. Exposure to Mn2+ was found to temporally enhance attachment but impair subsequent biofilm development, apparent by reduced biofilm biomass accumulation and lack of microcolony formation due to the induction of dispersion. Moreover, exposure to Mn2+ coincided with reduced production of the exopolysaccharides Psl and Pel, decreased transcriptional abundance of pel and psl, and decreased levels of c-di-GMP. To determine whether the effect of Mn2+ was linked to the activation of phosphodiesterases (PDEs), we screened several PDE mutants for Mn2+-dependent phenotypes (attachment and polysaccharide production) as well as PDE activity. The screen revealed that the PDE RbdA is activated by Mn2+ and is responsible for Mn2+-dependent attachment, inhibition of Psl production, and dispersion. Taken together, our findings suggest Mn2+ is an environmental inhibitor of P. aeruginosa biofilm development that acts through the PDE RbdA to modulate c-di-GMP levels, thereby impeding polysaccharide production and biofilm formation but enhancing dispersion. IMPORTANCE While diverse environmental conditions such as the availability of metal ions have been shown to affect biofilm development, little is known about the mechanism. Here, we demonstrate that Mn2+ affects Pseudomonas aeruginosa biofilm development by stimulating phosphodiesterase RbdA activity to reduce the signaling molecule c-di-GMP levels, thereby hindering polysaccharide production and biofilm formation but enhancing dispersion. Our findings demonstrate that Mn2+ acts as an environmental inhibitor of P. aeruginosa biofilms, further suggesting manganese to be a promising new antibiofilm factor.


Assuntos
Manganês , Pseudomonas aeruginosa , Humanos , Regulação Bacteriana da Expressão Gênica , Biofilmes , GMP Cíclico , Polissacarídeos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
J Bacteriol ; 205(5): e0000423, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098964

RESUMO

moaB homologs, encoding the molybdopterin biosynthetic protein B1, have been reported to be expressed under anoxic conditions and during biofilm growth in various microorganisms; however, little is known about MoaB's function. Here, we demonstrate that in Pseudomonas aeruginosa, MoaB1 (PA3915) contributes to biofilm-related phenotypes. Specifically, moaB1 expression is induced in biofilms, and insertional inactivation of moaB1 reduced biofilm biomass accumulation and pyocyanin production while enhancing swarming motility, and pyoverdine abundance without affecting attachment, swimming motility, or c-di-GMP levels. Inactivation of the highly conserved E. coli homolog of moaB1, moaBEc, likewise coincided with reduced biofilm biomass accumulation. In turn, heterologous expression of moaBEc restored biofilm formation and swarming motility by the P. aeruginosa moaB1 mutant to wild-type levels. Moreover, MoaB1 was found to interact with other conserved biofilm-associated proteins, PA2184 and PA2146, as well as the sensor-kinase SagS. However, despite the interaction, MoaB1 failed to restore SagS-dependent expression of brlR encoding the transcriptional regulator BrlR, and inactivation of moaB1 or moaBEc had no effect on the antibiotic susceptibility phenotype of biofilms formed by P. aeruginosa and E. coli, respectively. While our findings did not establish a link between MoaB1 and molybdenum cofactor biosynthesis, they suggest that MoaB1 homologs contribute to biofilm-associated phenotypes across species boundaries, possibly hinting at the existence of a previously undescribed conserved biofilm pathway. IMPORTANCE Proteins contributing to the biogenesis of molybdenum cofactors have been characterized; however, the role of the molybdopterin biosynthetic protein B1 (MoaB1) has remained elusive, and solid evidence to support its role in biosynthesis of molybdenum cofactor is lacking. Here, we demonstrate that, in Pseudomonas aeruginosa, MoaB1 (PA3915) contributes to biofilm-related phenotypes in a manner that does not support a role of MoaB1 in the biosynthesis of molybdenum cofactors.


Assuntos
Proteínas de Bactérias , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biofilmes , Proteínas Recombinantes/metabolismo , Regulação Bacteriana da Expressão Gênica
7.
mSphere ; 7(6): e0050522, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36374041

RESUMO

Dispersion is an active process exhibited by Pseudomonas aeruginosa during the late stages of biofilm development or in response to various cues, including nitric oxide and glutamate. Upon cue sensing, biofilm cells employ enzymes that actively degrade the extracellular matrix, thereby allowing individual cells to become liberated. While the mechanism by which P. aeruginosa senses and relays dispersion cues has been characterized, little is known about how dispersion cue sensing mechanisms result in matrix degradation. Considering that the alginate and motility regulator AmrZ has been reported to regulate genes that play a role in dispersion, including those affecting virulence, c-di-GMP levels, Pel and Psl abundance, and motility, we asked whether AmrZ contributes to the regulation of dispersion. amrZ was found to be significantly increased in transcript abundance under dispersion-inducing conditions, with the inactivation of amrZ impairing dispersion by P. aeruginosa biofilms in response to glutamate and nitric oxide. While the overexpression of genes encoding matrix-degrading enzymes pelA, pslG, and/or endA resulted in the dispersion of wild-type biofilms, similar conditions failed to disperse biofilms formed by dtamrZ. Likewise, the inactivation of amrZ abrogated the hyperdispersive phenotype of PAO1/pJN-bdlA_G31A biofilms, with dtamrZ-impaired dispersion being independent of the expression, production, and activation of BdlA. Instead, dispersion was found to require the AmrZ-target genes napB and PA1891. Our findings indicate that AmrZ is essential for the regulation of dispersion by P. aeruginosa biofilms, functions downstream of BdlA postdispersion cue sensing, and regulates the expression of genes contributing to biofilm matrix degradation as well as napB and PA1891. IMPORTANCE In P. aeruginosa, biofilm dispersion has been well-characterized with respect to dispersion cue perception, matrix degradation, and the consequences of dispersion. While the intracellular signaling molecule c-di-GMP has been linked to many of the phenotypic changes ascribed to dispersion, including the modulation of motility and matrix production, little is known about the regulatory mechanisms leading to matrix degradation and cells actively leaving the biofilm. In this study, we report for the first time an essential role of the transcriptional regulator AmrZ and two AmrZ-dependent genes, napB, and PA1891, in the dispersion response, thereby linking dispersion cue sensing via BdlA to the regulation of matrix degradation and to the ultimate liberation of bacterial cells from the biofilm.


Assuntos
Alginatos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/fisiologia , Alginatos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Óxido Nítrico , Biofilmes , Glutamatos/metabolismo
8.
Adv Exp Med Biol ; 1386: 69-94, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36258069

RESUMO

The cyclic di-GMP (c-di-GMP) second messenger represents a signaling system that regulates many bacterial behaviors and is of key importance for driving the lifestyle switch between motile loner cells and biofilm formers. This review provides an up-to-date summary of c-di-GMP pathways connected to biofilm formation by the opportunistic pathogen P. aeruginosa. Emphasis will be on the timing of c-di-GMP production over the course of biofilm formation, to highlight non-uniform and hierarchical increases in c-di-GMP levels, as well as biofilm growth conditions that do not conform with our current model of c-di-GMP.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Biofilmes , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/fisiologia , Pseudomonas aeruginosa/fisiologia
9.
Nat Rev Microbiol ; 20(10): 608-620, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35922483

RESUMO

Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa. However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation.


Assuntos
Biofilmes , Pseudomonas aeruginosa , Animais , Estágios do Ciclo de Vida , Pseudomonas aeruginosa/fisiologia
10.
NPJ Biofilms Microbiomes ; 8(1): 54, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798749

RESUMO

Transcriptomic studies have revealed a large number of uncharacterized genes that are differentially expressed in biofilms, which may be important in regulating biofilm phenotypes such as resistance to antimicrobial agents. To identify biofilm genes of unknown function in P. aeruginosa, we made use of RNA-seq and selected 27 uncharacterized genes that were induced upon biofilm growth. Biofilms by respective mutants were subsequently analyzed for two biofilm characteristics, the biofilm architecture and drug susceptibility. The screen revealed 12 out of 27 genes to contribute to biofilm formation and 13 drug susceptibility, with 8 genes affecting both biofilm phenotypes. Amongst the genes affecting both biofilm phenotypes was PA2146, encoding a small hypothetical protein that exhibited some of the most substantial increases in transcript abundance during biofilm growth by P. aeruginosa PAO1 and clinical isolates. PA2146 is highly conserved in É£-proteobacteria. Inactivation of PA2146 affected both biofilm phenotypes in P. aeruginosa PAO1, with inactivation of homologs in Klebsiella pneumoniae and Escherichia coli having similar effects. Heterologous expression of PA2146 homologs complemented the P. aeruginosa ∆PA2146, suggesting that PA2146 homologs substitute for and play a similar role as PA2146 in P. aeruginosa.


Assuntos
Gammaproteobacteria , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Tolerância a Medicamentos , Gammaproteobacteria/metabolismo , Pseudomonas aeruginosa
11.
PLoS Pathog ; 17(12): e1010144, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34890435

RESUMO

Persistent bacterial infections do not respond to current antibiotic treatments and thus present a great medical challenge. These conditions have been linked to the formation of dormant subpopulations of bacteria, known as persister cells, that are growth-arrested and highly tolerant to conventional antibiotics. Here, we report a new strategy of persister control and demonstrate that minocycline, an amphiphilic antibiotic that does not require active transport to penetrate bacterial membranes, is effective in killing Escherichia coli persister cells [by 70.8 ± 5.9% (0.53 log) at 100 µg/mL], while being ineffective in killing normal cells. Further mechanistic studies revealed that persister cells have reduced drug efflux and accumulate more minocycline than normal cells, leading to effective killing of this dormant subpopulation upon wake-up. Consistently, eravacycline, which also targets the ribosome but has a stronger binding affinity than minocycline, kills persister cells by 3 logs when treated at 100 µg/mL. In summary, the findings of this study reveal that while dormancy is a well-known cause of antibiotic tolerance, it also provides an Achilles' heel for controlling persister cells by leveraging dormancy associated reduction of drug efflux.


Assuntos
Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Minociclina/farmacologia , Antibacterianos/metabolismo , Infecções por Escherichia coli , Minociclina/metabolismo
12.
Biofilm ; 3: 100059, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34729470

RESUMO

The Pseudomonas aeruginosa orphan sensor SagS (PA2824) was initially reported as one of three orphan sensor kinases capable of activating HptB, a component of the HptB signaling pathway that intersects with the Gac/Rsm signaling pathway and fine-tunes P. aeruginosa motility and pathogenesis. Since then, this orphan sensor has been reported to be involved in other, unorthodox signaling pathways serving additional functions. The present review is aimed at summarizing the various functions of SagS, with an emphasis on its toggle or dual switch functions, and highlighting the role of SagS as a hub at which the various signaling pathways intersect, to regulate the transition from the planktonic to the sessile mode of growth, as well as the transition of surface-associated cells to a drug tolerant state.

13.
mSphere ; 6(1)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568456

RESUMO

In Pseudomonas aeruginosa, the orphan two-component sensor SagS contributes both to transition to biofilm formation and to biofilm cells gaining their heightened tolerance to antimicrobials. However, little is known about the identity of the signals or conditions sensed by SagS to induce the switch to the sessile, drug-tolerant mode of growth. Using a modified Biolog phenotype assay to screen for compounds that modulate attachment in a SagS-dependent manner, we identified glucose-6-phosphate to enhance attachment in a manner dependent on the glucose-6-phosphate concentration and SagS. The stimulatory effect was not limited to the attachment since glucose-6-phosphate likewise enhanced biofilm formation and also enhanced the expression of select biofilm marker genes. Moreover, exposure to glucose-6-phosphate coincided with decreased swarming motility but increased cellular cyclic-di-GMP (c-di-GMP) levels in biofilms. No such response was noted for compounds modulating attachment and biofilm formation in a manner independent of SagS. Modulation of c-di-GMP in response to glucose-6-phosphate was due to the diguanylate cyclase NicD, with NicD also being required for enhanced biofilm formation. The latter was independent of the sensory domain of NicD but dependent on NicD activity, SagS, and the interaction between NicD and SagS. Our findings indicate that glucose-6-phosphate likely mimics a signal or conditions sensed by SagS to activate its motile-sessile switch function. In addition, our findings provide new insight into the interfaces between the ligand-mediated two-component system signaling pathway and c-di-GMP levels.IMPORTANCE Pathogens sense and respond to signals and cues present in their environment, including host-derived small molecules to modulate the expression of their virulence repertoire. Here, we demonstrate that the opportunistic pathogen Pseudomonas aeruginosa responds to glucose-6-phosphate. Since glucose-6-phosphate is primarily made available due to cell lysis, it is likely that glucose-6-phosphate represents a cross-kingdom cell-to-cell signal that enables P. aeruginosa to adapt to the (nutrient-poor) host environment by enhancing biofilm formation, cyclic-di-GMP, and the expression of genes linked to biofilm formation in a concentration- and SagS-dependent manner.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Glucose-6-Fosfato/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , GMP Cíclico/análise , GMP Cíclico/metabolismo , Glucose-6-Fosfato/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Transdução de Sinais
14.
Nat Rev Microbiol ; 18(10): 571-586, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32533131

RESUMO

The formation of microbial biofilms enables single planktonic cells to assume a multicellular mode of growth. During dispersion, the final step of the biofilm life cycle, single cells egress from the biofilm to resume a planktonic lifestyle. As the planktonic state is considered to be more vulnerable to antimicrobial agents and immune responses, dispersion is being considered a promising avenue for biofilm control. In this Review, we discuss conditions that lead to dispersion and the mechanisms by which native and environmental cues contribute to dispersion. We also explore recent findings on the role of matrix degradation in the dispersion process, and the distinct phenotype of dispersed cells. Last, we discuss the translational and therapeutic potential of dispersing bacteria during infection.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica , Percepção de Quorum/genética , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Camundongos , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Plâncton/genética , Plâncton/crescimento & desenvolvimento , Plâncton/metabolismo , Transdução de Sinais , Transcriptoma
15.
Colloids Surf B Biointerfaces ; 192: 110989, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32361372

RESUMO

Self-defensive biomaterial surfaces are being developed in order to mitigate infection associated with tissue-contacting biomedical devices. Such infection occurs when microbes colonize the surface of a device and proliferate into a recalcitrant biofilm. A key intervention point centers on preventing the initial colonization. Incorporating antimicrobials within a surface coating can be very effective, but the traditional means of antimicrobial delivery by continuous elution can often be counterproductive. If there is no infection, continuous elution creates conditions that promote the development of resistant microbes throughout the patient. In contrast, a self-defensive coating releases antimicrobial only when and only where there is a microbial challenge to the surface. Otherwise, the antimicrobial remains sequestered within the coating and does not contribute to the development of resistance. A self-defensive surface requires a local trigger that signals the microbial challenge. Three such triggers have been identified as: (1) local pH lowering; (2) local enzyme release; and (3) direct microbial-surface contact. This short review highlights the need for self-defensive surfaces in the general context of the device-infection problem and then reviews key biomaterials developments associated with each of these three triggering mechanisms.

16.
J Bacteriol ; 202(3)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712279

RESUMO

Biofilms are multicellular aggregates of bacteria that are encased in an extracellular matrix. The biofilm matrix of Pseudomonas aeruginosa PAO1 is composed of eDNA, proteins, and the polysaccharides Pel and Psl. This matrix is thought to be degraded during dispersion to liberate cells from the biofilms, with dispersion being apparent not only by single cells escaping from the biofilm but also leaving behind eroded or hollowed-out biofilm. However, little is known of the factors involved in matrix degradation. Here, we focused on the glycoside hydrolases PelA and PslG. We demonstrate that induction of pelA but not pslG expression resulted in dispersion. As Psl is tethered to the matrix adhesin CdrA, we furthermore explored the role of CdrA in dispersion. cdrA mutant biofilms were hyperdispersive, while lapG mutant biofilms were impaired in dispersion in response to glutamate and nitric oxide, indicating the presence of the surface-associated matrix protein CdrA impedes the dispersion response. In turn, insertional inactivation of cdrA enabled pslG-induced dispersion. Lowering of the intracellular c-di-GMP level via induction of PA2133 encoding a phosphodiesterase was not sufficient to induce dispersion by wild-type strains and strains overexpressing pslG, indicating that pslG-induced dispersion is independent of c-di-GMP modulation and, likely, LapG.IMPORTANCEPseudomonas aeruginosa forms multicellular aggregates or biofilms encased in a matrix. We show for the first time here that dispersion by P. aeruginosa requires the endogenous expression of pelA and pslG, leading to the degradation of both Pel and Psl polysaccharides, with PslG-induced dispersion being CdrA dependent. The findings suggested that endogenously induced Psl degradation is a sequential process, initiated by untethering of CdrA-bound Psl or CdrA-dependent cell interactions to enable Psl degradation and ultimately, dispersion. Untethering likely involves CdrA release in a manner independent of c-di-GMP modulation and thus LapG. Our findings not only provide insight into matrix degrading factors contributing to dispersion but also identify key steps in the degradation of structural components of the P. aeruginosa biofilm matrix.


Assuntos
Polissacarídeos Bacterianos/metabolismo , Polissacarídeos/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Glicosídeo Hidrolases/metabolismo
17.
Colloids Surf B Biointerfaces ; 184: 110512, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31563809

RESUMO

Pseudomonas aeruginosa is a pathogen known to be associated with a variety of diseases and conditions such as cystic fibrosis, chronic wound infections, and burn wound infections. A novel approach was developed to combat the problem of biofilm antibiotic tolerance by reverting biofilm bacteria back to the planktonic mode of growth. This reversion was achieved through the enzymatic depletion of available pyruvate using pyruvate dehydrogenase, which induced biofilm bacteria to disperse from the surface-associated mode of growth into the surrounding environment. However, direct use of the enzyme in clinical settings is not practical as the enzyme is susceptible to denaturation under various storage conditions. We hypothesize that by encapsulating pyruvate dehydrogenase into degradable, biocompatible poly(lactic-co-glycolic) acid nanoparticles, the activity of the enzyme can be extended to deplete available pyruvate and induce dispersion of mature Pseudomonas aeruginosa biofilms. Several particle formulations were attempted in order to permit the use of the smallest dose of nanoparticles while maintaining pyruvate dehydrogenase activity for an extended time length. The nanoparticles synthesized using the optimal formulation showed an average size of 266.7 ±â€¯1.8 nm. The encapsulation efficiency of pyruvate dehydrogenase was measured at 17.9 ±â€¯1.4%. Most importantly, the optimal formulation dispersed biofilms and exhibited enzymatic activity after being stored at 37 °C for 6 days.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Complexo Piruvato Desidrogenase/metabolismo , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Materiais Biocompatíveis , Testes de Sensibilidade Microbiana , Nanopartículas/metabolismo , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Propriedades de Superfície , Suínos
18.
mSphere ; 4(4)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366711

RESUMO

The hybrid sensor kinase SagS of Pseudomonas aeruginosa plays a key role in the transition from the planktonic to the biofilm mode of growth. Recently, we have shown that distinct sets of residues in its periplasmic HmsP sensory domain are involved in the regulation of biofilm formation or antibiotic tolerance. Interestingly, the HmsP domain of the phosphodiesterase BifA shows great predicted structural similarity to that of SagS, despite moderate sequence conservation and only a number of residues involved in SagS signaling being conserved between both proteins. Based on this observation, we hypothesized that BifA and SagS may use similar mechanisms to sense and transduce signals perceived at their periplasmic HmsP domains and, therefore, may be interchangeable. To test this hypothesis, we constructed SagS hybrids in which the HmsP domain of SagS was replaced by that of BifA (and vice versa) or by the DISMED2 sensory domain of NicD. The SagS-BifA hybrid restored attachment and biofilm formation by the ΔbifA mutant. Likewise, while the NicD-SagS hybrid was nonfunctional, the BifA-SagS hybrid partially restored pathways leading to biofilm formation and antibiotic tolerance in a ΔsagS mutant background. Furthermore, alanine substitution of key residues previously associated with the biofilm formation and antibiotic tolerance pathways of SagS impaired signal transduction by the BifA-SagS hybrid in a similar way to SagS. In conclusion, our data indicate that the nature of the sensory domain is important for proper functionality of the cytoplasmic effector domains and that signal sensing and transduction are likely conserved in SagS and BifA.IMPORTANCE Biofilms have been associated with more than 60% of all recalcitrant and chronic infections and can render bacterial cells up to a thousand times more resistant to antibiotics than planktonic cells. Although it is known that the transition from the planktonic to the biofilm mode of growth involves two-component regulatory systems, increased c-di-GMP levels, and quorum sensing systems among others, the exact signaling events that lead to biofilm formation remain unknown. In the opportunistic pathogen Pseudomonas aeruginosa, the hybrid sensor kinase SagS regulates biofilm formation and antibiotic tolerance through two independent pathways via distinct residues in its periplasmic sensory domain. Interestingly, the sensory domains of SagS and BifA show great predicted structural similarity despite moderate sequence conservation. Here we show that the sensory domains of BifA and SagS are functionally interchangeable and that they use a similar mechanism of signal sensing and transduction, which broadens our understanding of how bacteria perceive and transduce signals when transitioning to the biofilm mode of growth.


Assuntos
Proteínas de Bactérias/genética , Periplasma/metabolismo , Pseudomonas aeruginosa/genética , Transdução de Sinais , Transdução Genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/fisiologia
19.
J Bacteriol ; 201(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988033

RESUMO

The dispersion of biofilms is an active process resulting in the release of planktonic cells from the biofilm structure. While much is known about the process of dispersion cue perception and the subsequent modulation of the c-di-GMP pool, little is known about subsequent events resulting in the release of cells from the biofilm. Given that dispersion coincides with void formation and an overall erosion of the biofilm structure, we asked whether dispersion involves degradation of the biofilm matrix. Here, we focused on extracellular genomic DNA (eDNA) due to its almost universal presence in the matrix of biofilm-forming species. We identified two probable nucleases, endA and eddB, and eddA encoding a phosphatase that were significantly increased in transcript abundance in dispersed cells. However, only inactivation of endA but not eddA or eddB impaired dispersion by Pseudomonas aeruginosa biofilms in response to glutamate and nitric oxide (NO). Heterologously produced EndA was found to be secreted and active in degrading genomic DNA. While endA inactivation had little effect on biofilm formation and the presence of eDNA in biofilms, eDNA degradation upon induction of dispersion was impaired. In contrast, induction of endA expression coincided with eDNA degradation and resulted in biofilm dispersion. Thus, released cells demonstrated a hyperattaching phenotype but remained as resistant to tobramycin as biofilm cells from which they egress, indicating EndA-dispersed cells adopted some but not all of the phenotypes associated with dispersed cells. Our findings indicate for the first time a role of DNase EndA in dispersion and suggest weakening of the biofilm matrix is a requisite for biofilm dispersion.IMPORTANCE The finding that exposure to DNase I impairs biofilm formation or leads to the dispersal of early stage biofilms has led to the realization of extracellular genomic DNA (eDNA) as a structural component of the biofilm matrix. However, little is known about the contribution of intrinsic DNases to the weakening of the biofilm matrix and dispersion of established biofilms. Here, we demonstrate for the first time that nucleases are induced in dispersed Pseudomonas aeruginosa cells and are essential to the dispersion response and that degradation of matrix eDNA by endogenously produced/secreted EndA is required for P. aeruginosa biofilm dispersion. Our findings suggest that dispersing cells mediate their active release from the biofilm matrix via the induction of nucleases.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/genética , Desoxirribonuclease I/genética , Endodesoxirribonucleases/genética , Proteínas de Membrana/genética , Pseudomonas aeruginosa/genética , Regulação Bacteriana da Expressão Gênica/genética , Genômica/métodos , Fenótipo
20.
Sci Rep ; 9(1): 3763, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842579

RESUMO

The formation of biofilms is a developmental process initiated by planktonic cells transitioning to the surface, which comes full circle when cells disperse from the biofilm and transition to the planktonic mode of growth. Considering that pyruvate has been previously demonstrated to be required for the formation of P. aeruginosa biofilms, we asked whether pyruvate likewise contributes to the maintenance of the biofilm structure, with depletion of pyruvate resulting in dispersion. Here, we demonstrate that the enzymatic depletion of pyruvate coincided with the dispersion of established biofilms by S. aureus and laboratory and clinical P. aeruginosa isolates. The dispersion response was dependent on pyruvate fermentation pathway components but independent of proteins previously described to contribute to P. aeruginosa biofilm dispersion. Using porcine second-degree burn wounds infected with P. aeruginosa biofilm cells, we furthermore demonstrated that pyruvate depletion resulted in a reduction of biofilm biomass in vivo. Pyruvate-depleting conditions enhanced the efficacy of tobramycin killing of the resident wound biofilms by up to 5-logs. Our findings strongly suggest the management of pyruvate availability to be a promising strategy to combat biofilm-related infections by two principal pathogens associated with wound and cystic fibrosis lung infections.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Ácido Pirúvico/química , Staphylococcus aureus/fisiologia , Tobramicina/farmacologia , Animais , Antibacterianos/uso terapêutico , Queimaduras/tratamento farmacológico , Queimaduras/microbiologia , Meios de Cultura/química , Modelos Animais de Doenças , Fermentação , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos , Suínos , Tobramicina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...